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domain of every elementarily equivalent subinterpretation 7. Each
i ble domain. ‘
h ¢ will therefore have a non-enumera . .
5‘1‘; fSuppose X is a nonempty set, and for.any xin X ther‘e is a )g
in )?}'Ssuch that xRy. Let J be the interpretation wgl;oseR d(?mtam is j
i ich ‘R’ i f x,y iff xRy. VadyxRy 1s truein -~
d according to which R’ is true of X, ' .
Tet ;:be an e%ementarily equivalent subinterpretation of S whos; do;lal'n
E is enumerable. Let g, €5,€9 -+ be an enumeration of E Y yxh yhls
true in #. Therefore for every ¢ in E there will be an ¢; in E suc dtfat
Re,. Define f by: f(0) = o} for each n, f(n+1) = ¢ 1ﬁ f(n) Re; an for
eeiverg.( k < j, not: f(n) Rey. The axiom of dependent choice is not required

to guarantee the existence of f.

14
Representability in Q

The present chapter falls into three parts. In the first part we introduce
the notion of representability of a function (of natural numbers) in a theory
and present a theory, called ‘Q’. In the second part we give an alternative
characterization of the recursive functions,} and in the third we use this
new characterization to show that every recursive function is represent-
able in the theory Q. In the next chapter several important results about
undecidability, indefinability and incompleteness will be shown to follow
from the latter result. The converse, that every function representable in

Q is recursive, is also true, and we shall also indicate why at the end of the
next chapter (Exercise 15.2).

Part I

We shall take a theory to be a set of sentences in some language that
contains all of its logical consequences that are sentences in that language.
If a sentence A is a member of theory T, it is called a theorem of T'; to
indicate that A is a theorem of T, we write: |, 4.

From now through Chapter 21, we shall confine our attention to
numerical theories: theories whose language contains the name o and
the one-place function symbol *. (Q will be such a theory.) The numeral
for n, n, is the result of attaching # occurrences of * to (the right of)
9. Thus 3 =0’"" and the numeral for #+1 is n’. For any natural
Dumber 7, n is an expression or sequence of symbols, a term of the sort
described.

. If A is a formula that contains free occurrences of the n (distinct)
, ?,r"arlables X1y ..., %,, we shall sometimes refer to 4 as A(x,,...,x,). For
0y natural numbers py, ..., Ppy A(Py, ---, Pu) is the result of substituting
Occurrence of p; for each free occurrence of x;in A(x, ..., %,) (for each
tYVeen 1 and ). In discussing a formula A(x,, ..., %,) we may wish to
- “Sider a formula, which we refer to as ‘A(yy,...,¥,). This is to be
Bdersiood to b

< e the formula that results when any bound occurrence of
‘ ithat may occur in A(%y, ..., %,) is first replaced by an occurrence of a new

t Cf. the last paragraph of Chapter 8.
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variable z; (different s for different y;s), and then an occurrence of y;
is substituted for each free occurrence of #; in the result.

To reduce clutter, we shall write ‘p’ instead of ‘py, ..., P, X’ instead
of %y, ..., %, , and ‘p’ instead of ‘py, i P 5 '

We can now define representability. An n-place function f is 7epre-
sentable in a theory T if there is a formula A(X, %,,) such that for any
natural numbers p, 7, if f(p) = j, then by Vit 11(A(P, ¥p41) © ¥pir = J)- In
this case the formula A(X, %,,,,) is said to represent f in T.

The requirement that bV, 1(A(P; %511) © Fni1 = j) should hold
whenever f(p) = j is equivalent to the requirement that both Fp A(p, j)
and FpV%,,1(A(Ps %n41) = ¥nsr=j) should hold whenever f(p)=j.
If the sentence j + Kis a theorem of T whenever j = k (and we. shall see
that Q is a theory of which this is so), then if A represents fin T and
f(p) * k, then kq — A(p, k) (for Frj + k, where j = f(p)). . .

The language of theory Q is L, the language of arithmetic. L contains

four non-logical symbols, the name o, the one-place function symbol *, -

and two two-place function symbols, + and -. Q is the set of sentences
in L that are logical consequences of these seven sentences, the axioms of

e Q1 VaVy(x' =y >x=y)

Q2 Vxo=+u, ;
Q3 Va(x+o—>Iyx=y"), V. (x=e v Ay x=1)
Q04 Vax+o=ux,

Q5 VaVya+y' = (x+3),

06 Vxx-0=o,

Q7 VxVyxey' = (x°y)+x.

Q is a consistent theory, for all of its axioms are true in the standard

interpretation N for its language L, in which the domain is the se(ti of tl: :
, +, and * &8

natural numbers, o is assigned zero as denotation, and ]
assigned the successor, addition, and multiplication functions. 0 “”r:
theory that is rather strong in certain ways (all recursive functions ai&
representable in it), but rather weak in others (e.g. VaVyx+y = y"’j
not a theorem of Q, as an exercise at the end of the chapter sb0
Tarski, Mostowski, and R. Robinson have written that it ‘is tnss
by the simplicity and clear mathematical content of its axioms: P
shall devote the remainder of this chapter to showing that all recv
functions are representable in Q.

disting“i”he& '
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Part II

We recall from Chapters 7 and 8 that the recursive functions can be
characterized as those functions obtainable from the zero function, the
successor function and the identity functions by means of a finite number
of applications of the operations of composition, primitive recursion,
and minimization of those functions called regular functions.

The zero function z is the one-place function whose value for all argu-
ments is zero.

The successor function ' (= s) is the one-place function whose value
for any argument 7 is 7 + 1 (= ¢', the successor of 7).

For each m > 1 and each n < m, there is an m-place identity function
id?. For any natural numbers 7, ...,7,, id}? (¢, ..., 2,) =,

If f is an m-place function, and g,,...,g,, are all z#-place functions,
then the n-place function % is said to be obtained from f, gy, ...,g,, by
composition if for any natural numbers p, &(p) = f(g,(p), ..., £.,(P))-

If f is an n-place function and g is an (n+ 2)-place function, then the
(n+ 1)-place function % is said to be obtained from f and g by primitive
recursion if for any natural numbers p, &, #(p, 0) = f(p) and

h(P» k+ I) =g(Pr k, h(P’ k))

An (n+ 1)-place function f is called regular if for any natural numbers
P, there exists at least one natural number 7 such that f(p,7) = o. If f
18 a regular (n+ 1)-place function, then the n-place function g is said to be

i obtained from f by minimization if for any natural numbers p,

&(p) = pif(p,i) = o,

3 i, Where ‘i’ means ‘the least natural number 7 such that’.

If R is an n-place relation of natural numbers (i.e. a set of ordered n-

~ tuples of natural numbers), then the characteristic function of R is the
E: =place function fg such that for any p,

1 if Rp (i.e. if p is in R),

TP =g if not Rp.

18 thus the characteristic function of the identity relation. For any 3, ,

) = 1if i = jand f_(i,f) = o if i + J.

v fe shall call 2 function Recursive (capital ‘R’) if it can be obtained from
. ‘unctions 4, -, f-, and the various id? by means of a finite number

O A licat: . " s
Pplications of the two operations of composition and minimization of

Blar functions,
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All Recursive functions are recursive, for +, °, f_ and the functions
id™ are recursive, and the recursive functions are closed under com-
position and minimization of regular functions. On the other hand the
zero function 2 is Recursive, for, as we saw in Chapter 7, 2 can be obtained
from + by minimization. And s is obtainable by composition from Recur-
sive functions and thus is Recursive too: for all 7

§(7) = i+ 1 = id} (¢) +/_(1d} (2), id} ().
In the rest of Part IT we show that all other recursive functions are also
Recursive, and for this it suffices to show that if f and g are Recursive
functions from which /4 is obtained by primitive recursion, then 4 is also
Recursive.

We must first see that certain relations and functions are Recursive. A
relation is Recursive iff its characteristic function is Recursive. (So = is
Recursive.)

Suppose, for example, that d is a two-place Recursive function and e
is a three-place Recursive function. Let R be the 6-place relation defined
by: Ri,j, k,m,n, qiff d(j,n) = e(n, k, m). Then R is Recursive, for

Jr(@, g, kym,m, q) = f=(d(idg (4,4, kym,m, q), id§ (2, J, ky m, m,9)),
e(id3 (4,7, k, m, m, q), id§(z,j, k,m, n, q), id§ (4,4, kymym, 9))-
Similarly, all other relations obtained by ‘setting Recursive functions
equal to each other’ are Recursive.
Suppose that R and .S are n-place Recursive relations. Then the inter-

section (R&.S) of R and S and the complement — R of R are Recursive,
for

Furse(P) = F1(P) f(P)s and/_pu(P) = F(fi(P), #(F1(P)) (= F-(f1(P): O}

As & and — suffice to define all truth-functional connectives, any rela-
tion obtained from Recursive relations by truth-functional, i.e., Booleat
operations is also Recursive. E.g. if Ri,j,k if and only if either i = k or
k * j, then R is Recursive. :

If R is an (n+ 1)-place relation, then e will be said to be obtained from
R by minimization if for any p, e(p) = puiRp,i. (e may be undefined fof
some p.) An (n+ 1)-place relation will be called regular if for any P; ther®
is an 7 such that Rp, 7. The function obtained from a regular relation y
minimization is everywhere defined.

If Ris a regular, Recursive (n+ 1)-place relation, and e is obtained fro™
R by minimization, then e is Recursive, for e(p) = ,uz'f_R(P,i) =9
(Rp, iifff_p(p,i) = 0.)
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Finally, if R is an (n+ 1)-place relation, then the (z+ 1)-place relation
S will be said to be obtained from R by bounded universal quantificationt
if (for all p,7) Sp,7iff Vi < j Rp, . If Ris Recursive and S is obtained from
R by bounded universal quantification, then S is Recursive. Proof. Let
T be defined by: Tp, j, 7 iff either not Rp, i or i =j. T is regular (for
all p, j, Tp, j, j) and Recursive (by the foregoing). Let d be defined
by: d(p, j) = piTp, j, i. d is Recursive. For any p, j, d(p,j) <j. And
d(p, ) =j iff for every i <j, Rp, 7; iff Sp, j. So if e is defined by:
e(p, 7) = f-(j, d(p, 7)), then e is Recursive and the characteristic function
of S.

S is said to be obtained from R by bounded existential quantificationt
if (for all p,) Sp,7iff 3i < j Rp, i. Analogously, any relation obtained from
a Recursive relation by bounded existential quantification is Recursive.

We’ll now define J, the pairing function.

Definition
J(a,b) = Ha+b)(a+b+1)+a.

Lemma 14.x

J is a one—one function whose domain is the set of all ordered pairs
{a, b) of natural numbers and whose range is the set of all natural numbers.

Proof. There are n+1 pairs {a,b) such that a+b=n (viz., {o,n),
(1,n—1),...,{n,0)). So there are o+1+2+...+n, = jn(n+1), pairs
(¢,d) such that c+d < n. We’ll say that {c,d) precedes (a,b) in order O
(cf. Chapter 13) if either c+d < a+bor(c+d = a+band ¢ < a). There
are a natural numbers less than a. So if a+b = n, there are §n(n+1)+a
pairs that precede {4, b) in order O. But if a+b = n, then

n(n+1)+a = J(a,b).

So J(a, b) is precisely the number of pairs preceding {a, by in order O.
a,b < J(a,b). Jis Recursive, for J is obtained from a regular Recursive
function by minimization: J(a, b) = pi[i+i = (a+b)(a+b+1)+24].
Define K and L, the inverse pairing functions, by:
K(i) = padb < iJ(a,b) = i (i.e. pa[3b < iJ(a,b) = ivJ(a,i) =1]),
. L(i) = ub3a < iJ(a,b) = i. By Lemma 14.1, K and L are Recur-
ve,

T:rheSe definitions differ slightly from those given in Chapter 7 in that ‘<’ is used
Instead of ‘<’,
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We now define some more relations and functions; it should be evident
from their definitions that they are Recursive.

m dividesn> ¥ < ni-m=n.
pisprimee>{p+ o &p + 1&Ym < p[mdividesp - (m = 1vm = p)]}.
m<ned<ni=m.
m=n=pi(ln<m—->n+i=ml&[—n<m-i=0]).

nis a power of the prime p <> {n & o & pis prime & Ym < n[m dividesn

— (m = 1vp divides m)]}.
(Notice that we can’t simply say that # is a power of & iff for every m < n,
if m divides #, thenm = 1 or k divides m; letn = k = 6, m = 2.)
n(p, b) = pi[(p is primé & iis a power of the primep &7 > b & i > 1)

v (p is not prime & ¢ = 0)].
For prime p, n(p, ) is the least number whose base p numeral is longer
than the base p numeral for b. E.g. 7(7, 25) = 49. (Note that 25 =34, and
49=100,.)
axb =a-n(p,b)+b.
»

If a + o, a*bis & o and is the number denoted in base p notation by the

»
result of writing the base p numeral for b directly to the right of that

for a. So, eg. 4*25—-4 49+25 = 221, and 4, = 4, 34, = 25, and

434, = 221. In what follows, association is assumed to be to the left:

‘axbwc’ means (a*b)*c not ‘ax( b*c) Then if a + 0, axbxcx...x2
» v » » » p» D r
is the number denoted in base p notatlon by the result of writing down the
base p numeral for b directly to the right of that for a, then that for ¢
directly to the right of that, ... and then that for z directly to the right

of that.

apart,be>3c < Sbfexaxd=bvexa=bvarxd=bva=D]

» » vy »

apart,biffa = oora = bor b’s base p numeral can be obtained by attach-

ing base p numerals to the left and/or right of a’s base p numeral.

a(p,q,7) = pil(p = 1)*j*i part,q v i =g]. (‘i = ¢’ is for ‘waste cases’)
PP

B(i,7) = (K (@), L(i).j)-

Lemma 14.2. (The fB-function lemma)

For any k and any finite sequence of natural numbers £, ..., 7, ther
exists a natural number ¢ such that for everyj < k&, 8(i,7) = 4.
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Proof. Let i, ..., 7, be a finite sequence of natural numbers. Let p be a
prime such that p—1 is greater than all of 4j,...,7,k. (There are in-
finitely many primes.) Let s=p—1. sfo. All of s,0,4y,...,k, i are
represented by single digits in base p notation (!). Let

g = SHOuiyh Sk Iat k... kskRxi,
» » » P PP » p D

Then for every j <k, a(p,q,j) =1;. Let {=J(p,q). Then for every
k ﬁ(zv]) - z;f

Suppose now that f is an n-place function, that g is an (n+ 2)-place
function, and that 4 is obtained from f and g by primitive recursion. Then
h(p,0)=F(p) and (for any k) for every j <k, h(p,j’)=g(p,j, h(p.j)). By
the A-function lemma, for any & there is an 7 such that for every j < &,
B, j) = h(p,j). These is are precisely those such that £(z,0) = f(p) and
for every j <k, p(i,j') = g(p,J, B(2,f)). Therefore, if R is the (n+2)-
place relation defined by:

Rp, k, i iff (7, 0) = f(p) & Vj < k B(i,j") = (P> B(t:7))»

then R is regular; and R is Recursive if f and g are. So if d is the (n+ 1)-
place function defined by: d(p, k) = #iRp, k, i, then d is Recursive if
fand g are. Moreover d(p, k) is the least 7 such that for every j < &,
B(,j) = h(p,j). For any such i, (i, k) = h(p, k). We may thus define £
by composition from g, d, idpt}: A(p, k) = f(d(p, k), id2t1(p, k)). As
B and id} 11 are Recursive, % is Recursive if f and g are Recursive.

Thus any function obtained by primitive recursion from Recursive
functions is itself Recursive.

We have therefore shown that a function is recursive if and only if it
is Recursive.

Payt III

We'll now show that all Recursive functions are representable in Q,
from which we conclude that all recursive functions are representable

in Q,
The identity functions id? are all representable in Q: since for any
oy oy Vo1 ((ly = 1y & .. &gy = iy & Xy yy = ) © 4y = i) I8 valid,
=0&.. &x,=%x,&%,,,=2x,)

Tepresents id?? in Q.
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We now show that addition is represented in Q by the formula

x1+ x2 . xa.

Lemma 14.3
Suppose thati+j = k. Thenkqi+j = k.

Proof. The proof is an induction on j. Basis step: j = o. We must
show that Fyi+ o0 = i. But this follows from Q4. Induction step: j = m’.
Then for some 7, k = n’ and ¢+m = n, whence by the induction hypo-
thesis, o i+ m = n, and therefore -4 (i+m)” = n’. Since

Fo(i+m)" =i+m’

by Qs, it follows that Fgi+j = k.

Lemma 14.4

%+ %, = &, represents addition in Q.

Proof. Vxy(i+j = x3 > x5 = k) is a logical consequence of i+j =k,
which, by 14.3, is a theorem of Q if i +7 = k.

Multiplication:

Lemma 14.5

Suppose that i-j = k. Then Fyi-j = k.

Proof. Induction on j. If j = o, we must show that Fyi-0 = 0. But
this follows from Q6. If j = m’, then k = n+1, where n = i -m. By the
hypothesis of the induction, Foi*m = n. By 14.3, Fon+i = k. By 97
Foi*m’ =i-m+i Sokgi-m’ =k, ie,lgi*j=k.

Lemma 14.6

%, ° %y = x5 represents multiplication in Q.

Proof. This follows from 14.5 just as 14.4 followed from 14.3.
So + and - are representable in Q.
Let’s now verify that if i # j, then i # j is a theorem of Q.
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Lemma 14.7
Ifi # j, then Foi + j.

Proof. We may suppose without loss of generality that ¢ < j. Induction
on 7. If i = o, then j > o, and so for some 7, j = n’. We must show that
koo % j, i, that koo & n’. But this immediately follows from Q2.
If i = m’, thenj = ' and m < n, for some n. By the induction hypothesis,
ko m # n, and hence by O1, ko m” + n’, ie,koi=j.

Lemma 14.8
Let A(x,, %5, %3) = the formula
(30, = x5 8203 = T) V(%) F %, & x5 = 0).

Then A(x;, x,, x5) represents f_ in Q.

Proof. If f_(i,j) =1, then i=j. So toi=j&x =1, so kg A(i,j, 1),
whence ko Vay(A(i, j, 25) © x5 = 1), as Yoy (A(1, j, #3) — x5 = 1) is a logical
consequence of A(i,j, 1) when i=j. If f_(i,j)=0, then i4j. By 14.7
Foi # j. Sokgi * j&o = o, whence kg Vars(A(i, j, #5) € 3 = 0).

Thus f_ is also representable in Q. We now show that any function
obtained by composition from functions representable in Q is also
representable in Q.

Suppose that A(xy, ...,

Bl(x$ xn+ 1)) (] Bm(x» xn+ l)
represent gy, ..., g, respectively. Then if / is obtained from f, gy, ..., &
by composition,
C(x’ x)’ = Elyl L 3ym(Bl(x’.yl) &... &Bm(x’ym) &A(.yl’ ey Vs x))’
represents 4.

For lfgl(P) = il’ "'!gm(P) = im’ andf(ili ""im) =j’ then h(P) =.7.’ and

%,,, x) represents f in O, and that

ko By(p, in), : (1)
b Vo, a(B 1(?) K1) = Fpyy = i1), (2)
o Bu(Psin)s (am—1)
Fo Y% a(Bou(Ps %1 ) %nss = im)s (2m)
Fo A(iy, ..., 1m, j), and (2m+ 1)
Fo Vx(A(y, ..., i, X) > % = j). (2m+2)
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(1), 3),...,(2m—1), and (2m+1) clearly entail that ko C(p,j). And
(2),(4), ..., (2m), and (2m+2) entail that ko Va(C(p,x) > x = j). We
may see this as follows: Assume we have By(p, 1), ..., Bu(P» y), and

A1y . s Yo %). From (2), we have y; = i, ...,and from (2m) we have
Y = iy So we have A(iy, ..., in, %), whence from (2m + 2) we have x = j.

Thus
Fo Y2y, .. yn(By(P,y1) & ... & B, ) & A1y - 0s Vs ¥)) =% = j),
i.e. ko Ya(C(p, #) - x = j), and therefore C represents /.

Lemma 14.9
Foreachi,bo Vax'+i= x+1i'.

Proof. Induction on 7. If { = o, Vxx"+0 = x+0" follows from
V(x40 = &' = (x+0)" = x+0"),
which follows from Q4 and Qs. If {=m', then by the induction
hypothesistg Vx %'+ m = x+m’, whence by 05, ¢ Y (¥’ + m” = (x"+m)’
= (x+m’)’ = x4+m"’), and hence
FoVau'+i=x+i’.

We now define x, < x, to be the formula Jx; x5+ x; = x,.

Lemma 14.10
If{ < j, then Foi<j.

Proof. Suppose ¢ < j. Then for some m, m’+i = j. By 14.3,
Fom'+i=j, andso FoImyuz+i=jielyi<j.

Lemma 14.11

Foreach, bo Va(x<i—>x =o0v...vx =i—1)(where, if { = o, the con-
sequent is an empty disjunction and hence is to be regarded as equivalent
to 0 + 0).

Proof. Induction on ¢. Basis step: ¢ = 0. We must show I ¥Yx—x < o
By 03 we have x = 0 v 3yx = y’. Assume x<o, i.e, Iww'+x = 0. If
% = 0 holds, we have " = @'+ 0 (by Q4) = w'+x = 0, which is impos-
sible by Q2. If x =y holds, we have (w’4y) =o'4)" (by O5)=o"+x=0
which is again impossible by Q2. Thus F, ¥z —x<o.

Induction step. We suppose ko Vx(x<i—>x=0v...vx =i—1). We
must show ko Va(x<i" > x =0vx =0"v .. vx=i). Assume we have
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x<i’, i.e., Jww'+x =1i". By Q3 we have Jyx =y " v =o0. If x =)'
holds, then we have i’ = w'+x = w'+y’ = (w'+y)’ (by Os), whence by
Q1 we have i = w'+y, and therefore y <i. By the induction hypothesis
wehavey = ov...vy = i—1(if i = o, we have 0 + 0), and therefore we
have x = 0’ v...vx =i (if { = o, we have 0 # 0), and therefore we have
x=0vx=0v..vx =1, which we also have in case ¥ = 0 holds.

Lemma 14.12
For each i, Fo Va(i<x — x = i'vi' <x).

Proof. Assume i < #, i.e. Jww'+i = x. We have w = o v Jyw =y’
by Q3. From w = 0 and w'+i = », we have 0'+1i = x, whence by 14.3
we have x = i’. From w = y' and w’+1 = x, we have y""+1 = x, whence
by 14.9 we have y'+1" = x, and so we have i’ <x.

Lemma 14.x3
For each ¢, FoVa(i<xvx = iva<i).

Proof. Induction on 7. Basis step: { = o. Assume x % 0. By 03 we
then have 3yx = ', and so by Q4 we have dyy'+0 =x, ie., 0<x.
Induction step: we suppose FoVx(i<xvx = iva<i). We must show
FoVa(i' <xva =i va<i’). By 14.12

FoVx(i<x— x =i'vi'<x). By 14.10 (I
FoVx(x = i—x<i’). And by 14.11 and 14.10 (I1)
FoVx(x<i—»x<i'). (T1T)

But from (I), (II), (III), and the induction hypothesis, it follows that
FoVa(l' <xvx =i'va<i').

We can now show that the result g of applying minimization to any
regular (n+ 1)-place function f that is representable in Q is also repre-
sentable in Q.

Suppose that f is a regular (#+ 1)-place function, and that

A(Xy %y 125 % r2)
fepresents fin Q. Let B(x, x,,,,) = the formula

(A(X, %41, 0) &V (0 <2y 3 —>— A(X, w, 0))).
Then B represents g in Q.
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For suppose thatg(p) = i. Thenf(p,7) = o,and foranyj < ,f(p,j) * o.
Since A4 represents f in Q, we have

ko A(p, i, 0), and (if i > o), )

}“0 . A(P» 0,0), (o)

ko —A(p,i—1,0). (i-1)
(0), ..., (i— 1), and 14.11 entail that

ko Yo(w<i— — A(p, w,0)), (i+71)

which, together with (7), entails that +, B(p, i).

We must show thatk Ve, y(B(Ps #141) = %pgr = i). Assume B(p, %,1),
i.c., A(p, x,, 1, 0) & Yw(w < x,,,, > — A(p, w,0)). From () and

Ye(w< x,,,-> — A(Ps w, 0)), we have — i<, .

From A(p, %, ,1,0) and (i + 1), we have —x,,; <i. Thus by 14.13 we have
Xy = 1. Sob, Vo, y(B(Py %,01) > X = 1)
Exercises

14.1 Verify the following assertion: all recursive functions are repre-
sentable in the theory (‘R’) whose language is L and whose theorems are
the conscquences in L of the following infinitely many sentences:

i+ j forallijsuchthati+j;
i+j=k forallij, ksuchthati+j=k;
irj=k forallij, ksuchthati-j= k;
Va(v<i—>x=o0v..vx=i-1)foralli

and Va(x<iva = ivi<x), for all 2.

14.2 Show that none of the following sentences are theorems of 0:

(@) Yax# 2,

() VYeVyVax+(y+3) = (x+y)+53,

(¢) VYxVyx+y =y+x,

(d) Vxo+wn:=ux,

() Vaa<a,

(f) Va¥y—(v<y&y<v),

(g) VxVyVaxe(yes)=(x"3)%

(h) YaVyxey=y-

(/) Yxo-x=o,

() YaVyVsae(y+s)=x-y+x-3.
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Hint: Let a and b be two objects that are not natural numbers, and
consider the following successor, addition, and multiplication tables:

X x (:' J a b f o j#o0o a b
i ' i i+7 b a [ o o a b
a a a a b a i#0 o i a b
b b b b b a a o b b b

b o a a a




15
Undecidability, 1ndeﬁnab111ty and
incompleteness

We are now in a position to give a unified treatment of some of the
central negative results of logic: Church’s theorem on the undecidability
of logic, Tarski’s theorem on the indefinability of truth, and Gédel’s
first theorem on the incompleteness of systems of arithmetic. These
theorems can all be seen as more or less direct consequences of the
result of the last chapter, that all recursive functions are representable
in 0, and a certain exceedingly ingenious lemma (‘the diagonal lemma’),
the idea of which is due to Gédel, and which we shall prove below. The
first notion that we have to introduce is that of a gidel numbering.

A godel numbering is an assignment of natural numbers (called ‘gédel
numbers’) to expressions (in some set) that meets these conditions: (1)
different godel numbers are assigned to different expressions: (2) it is
effectively calculable what the godel number of any expression is; (3) it
is effectively decidable whether a number is the gédel number of some
expression in the set, and, if so, effectively calculable which expression
it is the gédel number of.

Godel numberings enable one to regard interpreted languages sup-
posed to be ‘about’ the natural numbers —i.e. having the set of natural
numbers as the domain of their intended interpretation —as also referring
to the numbered expressions. The possibility then arises that certain
sentences, ostensibly referring to certain numbers, could be seen as refer-
ring, via the godel numbering, to certain expressions that are identical
with those very sentences themselves. The state of affairs just described
is no mere possibility; the proof of the diagonal lemma shows how it
arises, and succeeding theorems show how it may be exploited.

We shall consider a particular set of expressions and a particular godel
numbering, to which we appropriate the words ‘expression’ and ‘gddel
number’. There is nothing special about our particular gédel numbering;
the theorems and proofs that we are going to give with respect to the on¢
we use could have been given with respect to any number of others. Ouf
expressions are finite sequences of these (distinct) symbols.

We’ll make the following ‘conventions’ about the identity of certail
symbols: we stipulate that xy = x, %, =y, fo =0, fi =", fA =4, f1 =
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TABLE 15-1
() & 3 % f8 fo fo ... A} A} A%
y VOV X fY ST OfT ... AY A 4
&= X fn fi f3 ... 4% A4} Ag
o5 Sl .
—
and 4§ = =. We now assign each symbol in Table 15-1 the number in

the corresponding location in Table 15-2 as its gédel number:

TABLE 15-2

12 3 4 5 6 68 688 .. 7 78 788

29 39 49 59 69 689 6889 79 789 7889 ...
399 599 699 6899 68899 799 7899 78899 ...
3999 o : Lo .
39999

We'll write ‘gn’ to mean ‘the gédel number of’. Thus,

gn(x) = 5, gn(y) = 59, gn(0) = 6, gn (") = 68, gn (+) = 688,
gn(*) = 6889, and gn(=)=788.

We must now extend the gédel numbering so that all finite sequences
of symbols in Table 15-1 are assigned gédel numbers. (We don’t dis-
tinguish between a single symbol and the sequence which consists of that
one symbol.) The principle can be indicated in a single example: Since
gn(d) = 4,gn(x) = 5,gn(( ) =1, and gn(=) = 788, we want

gn(@x(x =)
to be 4515788.

The principle is that if expression 4 has gédel number 7, and B has j,
then AB, the expression formed by writing A immediately before B,
is to have as its godel number the number denoted by the decimal
arabic numeral formed by writing the decimal arabic numeral for i
immediately before the decimal arabic numeral for | J- It’s clear that our
83del numbering really is a godel numbering in the sense of the second
Paragraph.
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We now introduce the notion of the diagonalization of an expression 4.
Recall from the last chapter that n is the result of writing # occurrences
of " immediately after 0. If 4 is an expression with gédel number #, we
define T47 to be the expression n. In what follows 47 will be seen to
behave rather like a name for the expression 4. The diagonalization of A
is the expression

dx(x =4 & A4).

If A is a formula in the language of arithmetic that contains just the vari-
able x free, then the diagonalization of 4 will be a sentence that ‘says
that’ 4 is true of its own gédel number - or, more precisely, the diagonal-
ization will be true (in the standard interpretation /4") if and only if 4 is
true (in A”) of its own gédel number.

Lemma x

There is a recursive function, diag, such that if » is the godel number of
an expression 4, diag (n) is the godel number of the diagonalization of 4.

Proof. Let lh (“ length’) be defined by lh (n) = um(o < m & n < 10™).
Since every natural number # is less than 10™ for some positive m, and
as exponentiation and less than are recursive, lh is a recursive function.
lh (n) is the number of digits in the usual arabic numeral for #. Thus
Ih (1879) = 4; b (o) = Ih(9) = 1.

Let * be defined by: m#n = m- 10" 5, % is recursive. If m =+ o,
mxn is the number denoted by the arabic numeral formed by writing
the arabic numeral for m immediately before the arabic numeral for 7.
Thus2#3 = 23.

Let num be defined by: num (0) = 6; num (+ 1) = num () * 68 (all ).
num is recursive. As gn(o) =6 and gn(’) = 68, num(n) is the godel
number of n.

As no arabic numeral for a godel number contains the digit ‘o',
diag (n) may be taken to = 4515788 + (num (1) (3 * (n* 2))). diag is then

recursive. A (x =
We'll now reserve the word ‘theory’ for those theories whose variables
are %y, %y, ..., and whose names, n-place function signs, sentence letters,

and n-place predicate letters are some (or all) of f3,f7,..., fi, [,
A3, 45, ..., 43, At ..., respectively. As in the last chapter, we assume that
o0 and ’ occur in the language of all theories. We assume further that the
set of godel numbers of symbols of the language of the theory is recursiv®
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i.e. (by Church’s thesis), that there is an effective procedure for deciding
whether a given symbol may occur in some sentence in the language of the
theory.

Here’s the diagonal lemma:

Lemma 2

Let T be a theory in which diag is representable. Then for any formula
B(y) (of the language of T, containing just the variable y free), there is a
sentence G such that

ke G B(TGY).

Proof. Let A(x, y) represent diag in T'. Then for any #, &, if diag () = &,
brVy (A(n,y) oy = k).

Let F be the expression 3y (A4(x, y) & B(y)). F'is a formula of the lan-
guage of T that contains just the variable x free.

Let n be the g6del number of F.

Let G be the expression dx (x = n &3y (A(x,y) & B(y))). As n = "F7,
G is the diagonalization of F and a sentence of the language of T. Since
G'is logically equivalent to 3y (4(n, ) & B(y)), we have

br G 3y (A(n, y) & B(y))-
Let k be the godel number of G. Then
diag(n)=k, and k=TG.
So FpVy(A(n,y) oy = k).
So Fp G 3y(y = k& B(y)).
So Fp G Bk), ie., F,GeB(TGY).

A theory is called consistent if there is no theorem of the theory whose
negation is also a theorem. Equivalently, a theory is consistent iff there
is some sentence in its language that is not a theorem, iff the theory is
satisfiable.

A set 0 of natural numbers is said to be definable in theory T if there is a
formula B(x) of the language of T such that for any number &, if k€6,
then F, B(k), and if k¢6, then b, — B(k). The formula B(x) is said to
define # in T. A two-place relation R of natural numbers is likewise de-
finable in 7" if there is a formula C(x,y) of the language of T such that
for any numbers k, #, if kRn, thent,, C(k, n), and if kRn, thent, —C(k,n),
and C(x, y) is then said to define R in T (A perfectly analogous definition
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of definability can be given for three- and more-place relations on natural
numbers; we won’t need this more general notion, however.)

A theory T is called an extension of theory S if S is a subset of T, i.e,,
if any theorem of S is a theorem of 7. If fis a function that is representable
in S, and T is an extension of S, then f is representable in 7, and indeed
is represented in T by the same formula that represents it in S. Similarly,
any formula that defines a set in some theory defines it in any extension

of that theory.

Lemma 3
If T is a consistent extension of Q, then the set of godel numbers of
theorems of T is not definable in 7.

Proof. Let T be an extension of Q. Then diag is representable in T'; for
as diag s a recursive function, and all recursive functions are represent-
able in Q, diag is representable in Q, and hence is representable in any

extension of Q.
Suppose now that C(y) defines the set 6 of gédel numbers of theorems

of T. By the diagonal lemma, there is a sentence G such that
FrGe —C("GT).
Let k = gn(G). Then
Fr G e —C(k). *)
Then I, G. For if G is not a theorem of T, then k¢, and so, as C(y)
defines 6, b — C(k), whence by (¥), b, G.
So kef. So b, C(k), as C(y) defines 6. So, by (*¥), b, —G, and T is

therefore inconsistent.
A set of expressions is called decidable if the set of gédel numbers of

its members is a recursive set. Thus a theory T is decidable iff the set ¢

of gédel numbers of its theorems is recursive, iff the characteristic func-
tion of 0 is recursive.

If a theory is decidable, then an effective method exists for deciding
whether any given sentence is a theorem of the theory. For to determiné
whether a sentence is a theorem, calculate its gédel number first and
then calculate the value of the (recursive, hence calculable) characteristic
function for the gddel number as argument. The sentence is a theorem i
the value is 1.
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Conversely, if a theory is not decidable, then unless Church’s thesis is
false, no effective method exists for deciding whether a given sentence
is a theorem of the theory. For if there were such a method, then the
characteristic function of the set of godel numbers of theorems would
also be effectively calculable, and hence recursive, by Church’s thesis.

Theorem 1
No consistent extension of Q is decidable.

" Proof. Suppose T is a consistent extension of Q. Then by Lemma 3, the

set 0 of godel numbers of theorems of T is not definable in 7. Now if
A(x,y) represented the characteristic function f of 0 in 7, then A(x, 1)
would define 6 in 7. (For then if k€, f(k) = 1, whence F,. A(k, 1); and
if k ¢, f(k) = o, whence F, ¥y (A(k,y) <>y = 0), whence, as Fy0 # 1,
Fp — A(k, 1).) Thus the characteristic function of 6 is not representable
in T, and therefore, as T is an extension of Q, not representable in Q
either, and hence not recursive. So 7 is not decidable.

Lemma 4
O is not decidable.

Proof. Q is a consistent extension of Q.

We can now give another proof of the proposition that first-order
logic has no decision procedure, a proof that is rather different from the
one given in Chapter 10.

Let L be the theory in L, the language of arithmetic, whose theorems
are just the valid sentences in L. All theorems of L are theorems of O,
of course, but as not all of (indeed, none of) the axioms of Q are valid,
L is not an extension of Q, and we cannot therefore apply theorem 1.
But because Q has only finitely many axioms, we can nonetheless prove
that L is not decidable, and hence that there is no effective method for
deciding whether or not a first-order sentence is valid.

Theorem 2 (Church’s undecidability theorem)
L is not decidable.

Proof. Let C be a conjunction of the axioms of Q. Then a sentence 4 is
a theorem of Q iff C implies 4, iff (C— A) is valid, iff (C—~4) is a
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theorem of L. (So, intuitively, a test for validity would yield a test for
theoremhood in Q: to decide whether 4 is a theorem of O, test (C - 4)
for validity.)

Let ¢ be the gédel number of C. Let f be defined by:

fim) = 1%(g*(39999*(n*2)).
f is recursive. If n is the godel number of 4, then f(n) is the
godel number of (C — A).

Let A be the set of gédel numbers of theorems of L. If A is recursive,
then so is {n]|f(n)eA}. But {n|f(n)eA} is the set of godel numbers of
theorems of O, which, by lemma 4, is not recursive. Thus A is not
recursive and L is not decidable.

By arithmetic we shall understand that theory whose language is L and
whose theorems are just the sentences of L that are true in the standard
interpretation 4", in which the domain is the set of all natural numbers,
and o, ’, +, and - are assigned zero, successor, addition, and multiplica-
tion, respectively.

Theorem 3

Arithmetic is not decidable.

Proof. Arithmetic is a consistent extension of O, and by Theorem 1
no consistent extension of Q is decidable.

Thus, unless Church’s thesis is false, there is no effective method for
deciding whether an arbitrary sentence in the language of arithmetic is
true or false in .#". This negative result is in contrast to Presburger’s
theorem, proved in Chapter 21, that an effective method exists for de-
ciding whether an arbitrary sentence in the language of arithmetic not
containing ‘*’ is true or false (in.¥").

Theorem 4 (Tarski’s indefinability theorem)

The set of gédel numbers of sentences true in 4" is not definable in arith-
metic.

Proof. Since the theorems of arithmetic are just the sentences true i
¥, Theorem 4 follows from Lemma 3.

As any formula B(x) will be true (in.4") of the number k if and only if
B(k) is a theorem of arithmetic, another way to put Theorem 4 is to s3Y
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that there is no formula of the language of arithmetic (with one free vari-
able) which is true of just those natural numbers that are godel numbers
of truths of arithmetic, or, more briefly, ‘arithmetical truth is not arith-

metically definable’.

Lemma §
Any recursive set is definable in arithmetic.

Proof. Suppose 6 is a recursive set. Then the characteristic function of
fis recursive, and hence representable in Q. As in the proof of Theorem 1,
6 is then definable in Q, and hence definable in arithmetic, which is an
extension of Q.

Lemma § shows that Theorem 4 is at least as strong a result as Theorem
3, as Theorem 3 says that the set of godel numbers of truths of A~ is not
recursive. Since the converse of Lemma 5 does not hold (cf. Exercise 3),
Theorem 4 is actually stronger than Theorem 3.

A theory T is called complete if for every sentence A (in the language
of T), either 4 or —A is a theorem of T A theory T is consistent and
complete, then, iff for any sentence 4, exactly one of 4 and —4 is a
theorem. Arithmetic is a consistent, complete extension of Q.

A theory T is called axiomatizable if there is a decidable subset of T
whose consequences (in the language of T) are just the theorems of T.
If there is a finite, and hence decidable, subset with this property, the
theory is said to be finitely axiomatizable. 1t is clear from the definition of
axiomatizability that any decidable theory is axiomatizable; Q is an ex-
ample of a (finitely) axiomatizable theory that is not decidable.

The version of Godel’s incompleteness theorem that we shall prove is
the assertion that there is no complete, consistent, axiomatizable extension
of Q. That there is none will follow from Theorem 1 and the proposition
(Theorem 5) that any axiomatizable complete theory is decidable.

This last proposition should be confused neither with the statement
that every complete decidable theory is axiomatizable, which is trivially
true, nor with the statement that every decidable axiomatizable theory is
complete, which is false (counterexample: the theory whose non-logical
symbols are the sentence letters p and ¢, and whose theorems are the
consequences in this language of p).

Theorem g5
Any axiomatizable complete theory is decidable.
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Proof. Let T be any theory whatsoever.: Since the set of symbols that
may occur in sentences of the language of T is decidable (as we have
assumed carlier), the set of sentences of the language of T is itself de-
cidable, i.e. there exists a Turing machine which, when given a number as
input, yields 1 as output iff the number is the godel number of a sentence
of the language of T, and yields o otherwise.

Now suppose that T is axiomatizable and complete. If T is inconsistent,

then the theorems of T are just the sentences in the language of T, which,
we have just noted, form a decidable set. We may therefore suppose that
T is consistent also.

Since T is axiomatizable, there is a decidable set S of sentences whose
consequences (in the language of T') are just the theorems of 7. Let 4
be a sentence (in the language of T'). We shall say that a sentence is
A-interesting if it is a conditional of which the antecedent is a conjunction
of members of .S and the consequent is either 4 or —A4. Then, 4 is a
theorem of T iff there is a valid A-interesting sentence whose consequent
is 4 itself. And, since T is consistent and complete, 4 is a theorem of T
iff —4 is not a theorem of T, iff there is no valid A-interesting sentence
whose consequent is — 4. Since S is decidable, so is the set of A-interest-
ing sentences (for each sentence 4).

We shall show that T is decidable by showing that there exists a
Turing machine M which, when given a sentence A4 of the language of T
as input, yields 1 as output iff 4 is a theorem of T, and yields o as output
otherwise.

In Chapter 12 we established the existence of a Turing machine M*
which, when given any sentence as input, terminated after a finite number
of steps with the production of the words ‘yes, valid’ iff the given sen-
tence was valid.

Our machine M works by first writing down the number 1 after
the input sentence 4 and then going into a loop consisting of a sequence
of subroutines. In the nth of these, M writes down those k( < 7) sentences
with gédel numbers < 7 that are A-interesting and then ‘imitates’
M* F times, each time performing n steps in the operation of M* when
given as input (a new) one of the k A-interesting sentences that have

been written down. If one or more of these k sentences is shown valid

(by the production of the words ‘yes, valid’) after # such steps, M
picks one of them and determines whether its consequent is 4 or — A (a5
T'is consistent, the case cannot arise in which one sentence has consequent
A and another has — A), and then yields as output 1 or o, accordingly-
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But if not, M erases everything except A and the number after it, to which
it adds 1, and then goes into the z + 1st subroutine.

Since either 4 or — 4 is a theorem of T, but not both, there is a valid
A-interesting sentence C, with godel number 7, and M*, when applied
to C, will terminate with ‘yes, valid’ after some finite number of steps,
say j. M, therefore, when applied to 4, will go into at most max (7, )
subroutines before yielding 1 or o as output, and will yield 1 iff the conse-
quent of C'is A. So M yields 1 as output iff 4 is valid, and yields o other-
wise. T is therefore decidable.

Theorem 6 (Gidel’s first incompleteness theorem)
There is no consistent, complete, axiomatizable extension of Q.

Proof. Theorem 6 is an immediate consequence of Theorems 1 and .

Corollary

Arithmetic is not axiomatizable.

The import of Gédel’s first incompleteness theorem is sometimes
expressed in the words ‘any sufficiently strong formal theory (or system)
of arithmetic is incomplete (if it is consistent)’. A ‘formal’ theory may
be taken to be one whose theorems are deducible via the usual rules of logic
from an axiom system. Since an axiom system is here understood to be a
set of sentences for which an effective procedure for determining mem-
bership exists, and since the usual rules of logic are sound and complete,
that is, since all and only the logical consequences of a set of sentences can
be deduced from the set by means of the rules, ‘formal theory’ can be
considered synonymous with ‘axiomatizable theory’. ‘A formal theory
of arithmetic’ can therefore be taken to be an axiomatizable theory all of
whose theorems are truths in some interpretation whose domain is the
set of natural numbers and in which those of 0,’, +, *, <, 2, etc. that
occur in the theorems have their familiar, standard meanings.

Theorem 6 thus represents a sharpening of the above statement of
Gédel’s theorem in that it indicates a sufficient condition for ‘sufficient
Strength’, viz., being an extension of Q. Q, as we have seen, is a rather weak
theory (cf. Exercise 14.2), and Theorem 6 is thus a correspondingly
Strong result. It follows from Theorem 6 that any consistent mathematical
theory of which the theorems are just the consequences of some effectively
Specified set of axioms, and among which are the seven axioms of Q,
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is incomplete; hence for any interpretation of the language of the theory
there will be truths in that interpretation which are not theorems of the
theory. And perhaps the most significant consequence of Theorem 6
is what it says about the notions of ¢ruth (in the standard interpretation
for the language of arithmetic) and theoremhood, or provability (in any
particular formal theory): that they are in no sense the same.

Exercises

15.1 A formula B(y) is called a truth-predicate for T'if for any sentence
G of the language of T, G« B("G"). Show that if T is a consistent
theory in which diag is representable, then there is no truth-predicate
for T.

15.2 Show that all functions representable in  are recursive.

15.3 A set S of natural numbers is called recursively enumerable (r.e.)
if there is a (two-place) recursive relation R such that S = {x|3y Rxy}.
Show that for any set S, S is recursive iff both S and S are r.e. (Kleene’s
theorem). Are all r.e. sets definable in arithmetic? (Yes. Why?) Give
some examples of r.e. sets and some examples of non-r.e. sets.

15.4 (Craig) Show that a theory T is axiomatizable if T is r.e., i.e. if
the set of gédel numbers of members of T is r.e.

15.5 Let By(y) and By(y) be two formulas of the language of T" with
¥ as sole free variable. Show how to construct sentences 4; and 4,
such that b 4, & By(T4,7) and by Ay & By("4, 7).

Solution to 15.2 (Using Church’s thesis)
15.2 Suppose A(x,y) represents f in Q. Since Q is consistent and

m + n is a theorem of Q whenever m + n, F ¥y (A(p,y) &y = m) iff -

f(p) = m. In order to calculate f(p), then, one may use a ‘search pro-
cedure’ similar to the one used in the proof of Theorem § to determine
for which m the conditional whose antecedent is some fixed conjunction

of the axioms of Q and whose consequent is Yy (4(p,y) >y = m) 8

valid. That m—it will be unique —is f(p).

Solution to 15.4 (very tricky)
Suppose that R is a recursive relation and

{x|x is the godel number of a member of T} = {x|3ny}’}'
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For any sentence A and natural number y, let A% be the conjunction
(A&...(A&A)...) of y+2 occurrences of A. Thus, e.g.

A? = (A&(A&(A&A)))

and A° = (A&A). Let U = {4v|Rgn(A)y}. If 4 € T, then for some y,
Rgn(A)y and Ave U; and if A € U, then 4 € T. Since 4 and A are
equivalent, 7'and U imply the same sentences, and the set of sentences
in the language of T that follow from U is thus T itself. To show that
T is axiomatizable, then, we need only show that U is decidable. But
U is decidable: to decide whether an arbitrary sentence B is in U, we
may apply the following effective procedure. Determine whether B is
the conjunction (4&...(A&4)...) of z occurrences of some sentence
A, for some z > 2. If not, B¢ U. But if so, find A4 and =z, and let
% = gn(A) and y = 2—2. Determine whether Rxy. (R is recursive.) If
so, Be U; if not, B¢ U.



